Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

نویسندگان

  • Jeffrey D. Fitzgerald
  • Ryan J. Rowekamp
  • Lawrence C. Sincich
  • Tatyana O. Sharpee
چکیده

Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Maximum Mutual Information Dimensionality Reduction for Language Identification

In this paper we propose Constrained Maximum Mutual Information dimensionality reduction (CMMI), an informationtheoretic based dimensionality reduction technique. CMMI tries to maximize the mutual information between the class labels and the projected (lower dimensional) features, optimized via gradient ascent. Supervised and semi-supervised CMMI are introduced and compared with a state of the ...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Feature Transformation Based on Generalization of Linear Discriminant Analysis

Hidden Markov models (HMMs) have been widely used to model speech signals for speech recognition. However, they cannot precisely model the time dependency of feature parameters. In order to overcome this limitation, several researchers have proposed extensions, such as segmental unit input HMM (Nakagawa & Yamamoto, 1996). Segmental unit input HMM has been widely used for its effectiveness and t...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Log-Linear Optimization of Second-Order Polynomial Features with Subsequent Dimension Reduction for Speech Recognition

Second order polynomial features are useful for speech recognition because they can be used to model class specific covariance even with a pooled covariance acoustic model. Previous experiments with second order features have shown word error rate improvements. However, the improvement comes at the price of a large increase in the number of parameters. This paper investigates the discriminative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011